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Abstract

We present a phase-field model to study the morphological transitions of surfactant micelles in

supersaturated dilute solution. Simulations reveal that multiply connected micellar structure can

be produced by interface branching instability of a growing micelle at relatively large supersatura-

tion and intermediate spontaneous curvatures. Two branching mechanisms, i.e. a disk–to–cylinder

shape transition and a tip bifurcation process, are identified for disklike and cylindrical micelles,

respectively. We propose that dynamic branching at the micelle growth front provides an impor-

tant kinetic pathway for the formation of branched wormlike micelles that are observed in many

surfactant systems.

Keywords: branched wormlike micelles, dynamic branching mechanisms, micelle mor-

phological transitions, interface instability, phase–field simulation, linear stability analysis
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At sufficiently large concentrations, amphiphilic molecules such as surfactants can form

micellar structures in solutions with three characteristic morphologies: sphere, cylinder, and

bilayer. Micelle morphology derives from the bending curvature energy of surfactant layers

with an expression introduced by Helfrich [1]: Ecurv =
∫∫

dA [2κ(H −H0)
2 + κK]. H and

K are the mean and Gaussian curvatures of the surfactant layers, and κ and κ are their

corresponding bending moduli. The spontaneous curvature H0 is an intrinsic property of

the surfactant/solvent system that originates from the volume difference between the head-

and tail-groups, and is influenced by parameters such as temperature, electrolyte, and co-

surfactants. As H0 increases, different equilibrium micelle shapes are produced that vary

from bilayer to cylindrical and then to spherical morphologies.

However, other micelle morphologies with non-constant curvatures are also observed; in

particular, experiments reveal the existence of “branched wormlike” micellar networks [2–4],

in which multiple elongated cylinder segments are interconnected by threefold “Y-shaped”

junctions (e.g. see Fig. 1(a) of ref. [5]). The development of branch points among cylindrical

micelles has significant impact on the rheological properties [6, 7] and phase stability of

the surfactant solutions [3]. Because the junctions have very different curvatures from the

cylindrical body, their thermodynamic stability and that of the branching network have been

extensively studied [5, 8, 9]. However, the processes by which branches form and evolve is

less understood.

Branched wormlike micelles are reminiscent of snow flakes, ramified trees, river deltas

and many other branched structures found in nature. In many cases, dynamic instability of

growth fronts produces branching such as in dendritic growth [10] and viscous fingering [11].

Here we use phase-field simulations to show that similar interface instability also occurs

during micellar growth and can lead to the formation of branched morphology.

The phase-field method has provided considerable insights to dendritic growth [10, 12]

and other microstructure evolution phenomena in materials [13]. We recently developed a

phase-field model for micellar growth in dilute solutions [14]. The model is briefly described

below. Details can be found in ref. [14]. In a surfactant/polar solvent binary system, a

scalar phase-field variable φ(~x) is introduced to characterize local surfactant concentration

and distinguish between the micelle “phase” and the liquid phase. φ(~x) varies smoothly

along a spatial trajectory from -1 at the hydrophobic micelle core to φsol ≈ 1 in solution,

where (1-φsol)/2 represents the volume fraction of free surfactants in solution. The head
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groups of surfactants are assumed to always abut the polar solvent at the micelle/solution

interface specified by the level surface φ(~x) = 0. The following free energy functional for

φ(~x) is proposed

F [φ(~x)] =

∫∫∫ [
f(φ) +

λσ2

2
p(φ)2 − 4λH0 |∇φ| ∇2φ

+

(
ν(φ)

2
+λσp′(φ)+2λH2

0

)
|∇φ|2 +

λ

2
(∇2φ)2

]
dV (1)

By rewriting Eq. 1 in a local orthogonal coordinate system (r,s,t), where r runs in the

direction of ∇φ and s and t lie in the local tangent plane of the φ level surfaces, we show [14]

that F can be divided into two parts, i.e. F = Fcurv+Fchem. Fcurv is the the curvature-related

energy contribution

Fcurv=

∫∫∫
dV λ

(
∂φ

∂r

)2[
2(H(~x)−H0)

2−K(~x)
]

(2)

where H(~x) and K(~x) are the mean and Gaussian curvatures of the level surface of φ at

point ~x=(r,s,t). In the sharp-interface limit Eq. 2 reduces to a surface integral over the

micelle/solution interface and recovers the Helfrich curvature energy expression where the

bending moduli are: κ=-κ=λ
∫

(∂φ/∂r)2dr.

The curvature-independent part of the free energy is

Fchem =∫∫∫
dV

[
f(φ)+

ν(φ)

2

(
dφ

dr

)2

+
λ

2

(
∂2φ

∂r2
− σp(φ)

)2
]

(3)

where p(φ)=1/16(1−φ)3(8+9φ+3φ2) interpolates smoothly between p(−1) = 1 and p(1) =

0. f(φ) in Eq. 3 is the homogeneous chemical free energy density. It is modeled by a double-

well-shaped piece-wise polynomial with two minima at ±φm ≈ ±1 to reflect the immiscibility

between surfactant and solvent. The “emulsion behavior” of the surfactant solution has been

modeled by a concentration-dependent gradient coefficient ν(φ)=ν0 +(ν1−ν0)φ
2 with ν0 <0

and ν1 >0 [15]. The negative values of ν near the interface φ=0 causes the interface area to

spontaneously grow, i.e., to expose as many head groups to the solvent as possible, and a

positive ν(φ=1) for the solvent ensures the stability of the bulk solution. It can be shown that

the λ-dependent term in Eq. 3 introduces the surfactant layer-layer interaction that stabilizes

a bilayer structure with an equilibrium (self–assembly) thickness l0 ∝ σ−1/2 [14]. Therefore

both the self-assembly behavior of surfactants in solvent and the bending curvature energy of
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surfactant layers are captured in Eq. 1. We note that Eq. 1 is similar to the Ginzburg–Landau

formulation developed by Gompper and coworkers for oil/water/amphiphile ternary systems

[15], but the spontaneous curvature and micelle length scales are explicitly incorporated in

our model. The free energy form of our model also shares features with the phase-field crystal

theory [16] which includes a trade-off between negative and positive gradient energy terms

that produces a “self-assembly” of ensemble-averaged atoms into crystalline structures.

The time evolution of φ is postulated to follow the Cahn-Hilliard equation [17] for con-

served order parameters:

∂φ/∂t = M∇2(δF/δφ) (4)

where M is the mobility of surfactants in solution. Eq. 4 is used to simulate micellar growth

with a spectral method after non-dimensionalizing Eqs. 1 and 4 with length, energy and

time units lc=2 nm, εc=2.5×10−18 J and tc=Mεc/l
3
c . Parameters in Eq. 1 can be fitted

to the properties of a specific surfactant/solvent system. In all simulations presented here,

dimensionless parameters φm=0.999, σ=15, ν0=-0.075, ν1=0.001, and λ=0.005 are used.

They produce a critical micelle concentration of 0.05% volume fraction, bilayer half thickness

l0≈ 2 nm, and bending stiffness κ≈ 20 kT, which are similar to the properties of short-chain

surfactants like cetyltrimethylammonium bromide (CTAB) in which branched micelles were

found to form at increased salt concentrations [6]. Nevertheless, we systematically varied

the value of H0 in simulations to examine the effects of spontaneous curvature on micellar

growth morphology.

We simulated the growth of a spherical micelle nucleus in a supersaturated surfactant

solution. The initial concentration of the solution was slightly perturbed from a uniform

value. A 64×64×64 mesh with grid spacing ∆x = 10/64 and periodic boundary conditions

was used. (all physical units refer to their non-dimensionalized form as described above.)

At an initial concentration c0 = 2% volume fraction, the growing micelle’s morphology

varies from spherical to cylindrical to disklike as H0 is decreased from 1/l0 to 1/2l0 and

to 0, as shown in Fig. S1 in the Supporting Information. which conforms to predictions

from the curvature energy model. Upon increasing supersaturation, however, new micelle

growth behavior emerges. We illustrate this by setting H0 = 0.25—which is intermediate to

cylindrical and disk-like forms—and comparing micelle evolution behavior at concentration

c0 = 2%, 3% and 4% as shown in Fig. 1 and the Supporting Information. For c0 = 2%, the

nucleus grows into a cylindrical micelle. At c0 = 3%, however, a disklike micelle emerges
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FIG. 1: Snapshots of the φ=0 level surface of a micelle growing from a spherical nucleus in solution

of c0 = 2%, 3% and 4%, superimposed on the micelle volume-vs-time curves. The times the

snapshots correspond to are marked by � for c0=2%, � for c0=3% and N for c0=4%.

from the nucleus growth with its radius increasing with time. Nevertheless, the disk’s

rim becomes unstable at large radii. As shown in Fig. 1, perturbation develops at the

growth front and generates four finger–like protuberances around t=28 that subsequently

grow by consuming volume from the disk’s bilayer region. Eventually, the disklike micelle is

transformed into a multi–connected cylindrical micelle with individual arms linked by two

threefold junctions: a morphology that bears close resemblance to the branched worm-like

micelles observed in experiments. Fig. 1 also shows the time dependence of micelle volume

upon micellar growth. The relatively constant slopes of the micelle volume growth curve

in both the disk expansion and cylinder elongation regimes suggest that the disk radius

grows as t1/2 and the subsequently formed cylindrical branches lengthen at a steady state.

A similar morphological transition sequence is also seen at the higher supersaturation c0 =

4%. Nevertheless, the disk shape instability develops at larger radii with more (six) arms

formed at the growth front, producing a branched micelle with four junctions.

This disk–to–cylinder transition behavior (e.g. at c0 = 3%) persists even asH0 is increased

to 0.5 which strongly favors the cylindrical morphology. However, unlike the the case of
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H0 = 0.25, for H0 = 0.5, the initially formed branch points become unstable and break up

at a later time, resulting in a final configuration of disconnected cylindrical micelles (see Fig.

S2 in the Supporting Information). Therefore, our simulations reveal that two independent

conditions are necessary for producing stable branched micelles: 1) an intermediate H0

between those preferring the disk and cylinder morphologies, and 2) a sufficiently large

surfactant supersaturation. They are consistent with the experimental observations that

a morphological transition from linear to branched wormlike micelles can be induced by

increasing surfactant [3] and/or electrolyte concentrations [4, 6] in solution. The latter has

the effect of reducing electrostatic repulsion between head groups of ionic surfactants and

lowering the effective spontaneous curvature.

Our simulations suggest that the micelle growth morphology is controlled by the interplay

between surfactant-supersaturation and the bending curvature energy of surfactant layers.

Compared to the one-dimensional growth behavior exhibited at c0=2% for H0=0.25 and

0.5, a larger driving force supplied by the increased supersaturation at c0=3% can overcome

the unfavorable curvature-energy and induce a quasi-two-dimensional micelle morphology

that facilitates a higher growth rate. However, when free monomers in solution are gradu-

ally consumed by disk growth that causes the driving force to drop, the micelle shape will

transform back to the preferred cylindrical geometry under the influence of curvature en-

ergy. Such a morphological transition is initiated by the growth front instability of disklike

micelles, which is analogous to dendritic growth in solidification of crystalline materials ??

but has not been reported before for surfactant micelles. We show below that the onset

of micelle shape instability can be explained by a linear stability analysis similar to the

classical Mullins-Serkeka instability [18] for a solidifying growth front. To analyze stability,

we consider diffusion-limited disklike micelle growth in a two-dimensional system. The disk

radius R� l0 is initially perturbed by small amplitude wave: r(θ)=R+ε cos(nθ) (n=1,2,3,...),

ε�R. Let c0 and ceq be the concentrations at infinity and the micelle/solution interface,

respectively, and assume that the micelle consists only of surfactant molecules. In the small

supersaturation limit ∆C ≡ (c0− ceq)/(1− ceq)� 1, surfactant diffusion in front of the disk

can be assumed to be quasi–steady–state and follow the Laplace equation, ∇2c = 0. The

boundary condition at the micelle/solution interface is given by

ceq(θ) = c0eq

(
1 +

Ω

2kT l0r(θ)

δ∆Erim
curv

δr(θ)

)
(5)
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c0eq is the solution concentration in equilibrium with a flat surfactant bilayer and Ω is the

volume of a monomer. Eq. 5 is similar to the Gibbs–Thomson relation and accounts for the

increased surfactant chemical potential due to the local excess bending curvature energy of

the disk’s rim, which is

∆Erim
curv =

πκl0
2

∫ 2π

0

(κr − κr
0)2
√
r(θ)2 + r′(θ)2dθ (6)

where κr = (r2 + 2r′2− rr′′)2/(r2 + r′2)3/2 is the rim’s radial curvature and κr
0 ≡ 2H0− 1/l0

is the preferred radial curvature. On the other hand, the concentration flux at the far-field

is determined to be ∂c/∂r = 2(c0 − ceq)/| ln ∆C|r from the self-similarity solution of the

diffusion equation [10]. By solving the concentration field in solution for these boundary

conditions, the disk’s growth velocity can be evaluated from the Stefan condition [19]:

dr(θ)

dt
=
dR

dt
+
dε

dt
cos(nθ) =

D

1− ceq
∂c

∂r

∣∣∣∣
r=r(θ)

(7)

We obtain dR/dt=2D/| ln ∆C|R from Eq. 7, which explains the parabolic growth of the

disk radius (or the linear growth of the disk volume) seen in Fig. 1. The growth rate of the

perturbation amplitude is found to be

dε

dt
=

D(n− 1)

(1− ceq)R
×
[

2(c0 − ceq)
| ln ∆C|R

−πκΩc0
4kT

n(n+ 1)[2n2 − 3 + (2κr
0R)2]

R3

] (8)

Note that the first term within the bracket on the right hand side of Eq. 8 scales with

R−1, which the second term scales with R−3. Therefore, Eq. 8 shows that for any given

wavenumber n¿1, a disk micelle will eventually become unstable (i.e. dε/dt>0) against the

perturbation when its radius R becomes sufficiently large. The critical radius above which

the interface instability develops is n- and H0-dependent. At a given radius, the fastest

growing perturbation mode has a wavenumber nmax∝R3/4 in a cylinder-favoring system (i.e.

H0 = 1/2l0), or nmax∝R1/2 when the bilayer morphology is preferred (i.e. H0 → 0). The R

dependence of nmax explains why more cylindrical fingers emerge from the disk’s rim when

the initial solution concentration c0 is increased from 3% to 4% in our simulations (Fig. 1):

at the higher supersaturation c0=4%, the disk radius R has a larger growth rate because of

the increased driving force. As a result, the growth of perturbation is not significant relative

to disk expansion until reaching a larger R, at which the dominant perturbation has a larger

wavenumber and more protuberances are thus generated than in the case of c0=3%.
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FIG. 2: Snapshots of a cylindrical micelle with H0=0.25 growing in solution of c0=3% at t=0, 15,

20, 23, 31 and 36. Only half of the micelle is shown for clarity.

In addition to the disk rim instability, we discovered from simulations that branching

can also occur to cylindrical micelles via a tip splitting mechanism. Fig. 2 shows a cylin-

drical micelle with H0=0.25 that was first grown from a spherical nucleus at c0=2%, and

subsequently subject to a higher monomer concentration at c0=3%. After the solution

concentration change, the spherical cap of the cylindrical micelle starts to swell because

the increased supersaturation causes surfactant monomers to be absorbed into the micelle

growth front more rapidly than can be accommodated by the cylinder elongation. How-

ever, the larger cap is not favored by the curvature energy, and it gradually flattens and

then splits into two smaller caps, leaving a Y–shaped junction behind. The morphological

transition consumes surfactant monomers in the region surrounding the cap and reduces the

local supersaturation. The newly formed arms thus grow into two cylindrical branches after

splitting. As shown in Fig. 2, tip splitting may happen again when the cylinder caps enter

regions with sufficiently high surfactant concentration. This phenomenon resembles the tip

splitting of a needle crystal in the absence of surface energy anisotropy [10], but here it is

the bending curvature energy rather than the surface energy that dampens the interface

perturbation. The onset of tip splitting in a cylindrical micelle can be analyzed by a linear

stability analysis similar to that for crystal growth [10] and will be reported elsewhere.

The tip bifurcation process provides a mechanism for a single micelle to repeatedly add

branch points to itself to sprawl into a hierarchically branched network structure. We

demonstrate this point with a micelle growth simulation using H0=0.25 and c0 = 3% and

a computation domain of size 40×40×40 that is much larger than those used in Fig. 1 and

Fig. 2. As shown in Fig. 3, after two junctions emerge from the disk front perturbation of
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FIG. 3: Snapshots of the φ= 0 level surface of a micelle with H0 = 0.25 growing from a spherical

nucleus in a solution of c0 = 3%, using a large computation domain (see text). Branching junctions

formed from disk–to–cylinder transition are marked by red arrows and those generated by tip

bifurcation are highlighted by black arrows on the micelle snapshot at t=50.

n=4, more junctions are generated by tip bifurcation at the growth front, which result in

a multi-connected branched wormlike micelle at the end of simulation. We note that the

reason that multiple branching events can occur subsequently in this simulation but not in

simulations using smaller domain sizes is that the solution supersaturation decreases more

slowly with time upon micellar growth in the larger computation box and the driving force

remains sufficiently high for interface instability to develop over an extended period of time.

In conclusion, results from phase-field simulations and linear stability analysis provide the

first evidence that links the development of branched wormlike micelles to micelle/solution

interface instability during micellar growth. Branch points can develop through disk–to–

cylinder or tip–splitting morphological transitions, which lead to the formation of multiply

connected network structures. In micellar systems, the equilibrium between micelles
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and the surrounding solution is dynamically maintained through constant exchange of

surfactant molecules between them. Surfactant monomer concentration in the solution

exhibits significant fluctuation both spatially and temporally, and branching instability

can occur to micelles in regions with large local supersaturation. While the stability of

the as–formed junctions is ultimately determined by the thermodynamic properties of

the surfactant/solvent systems, the dynamic branching phenomena revealed in this work

provide an important kinetic mechanism for establishing the equilibrium junction density

in the micellar networks. Despite recent progress in experimental techniques [2–4, 6, 7]

that have considerably enriched our knowledge of branched micelle structures, it remains a

challenging task to infer the details of branching dynamics from experimental observations.

We demonstrate in this paper that phase-field simulation is a useful tool to compliment

experiments to provide valuable insights on the morphological evolution of surfactant

self-assembled structures.

Supporting Information: Includes additional figures of micelle morphology formed under

different solution concentration and spontaneous curvature and animations of phase-field

simulations of micelle branching process.
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